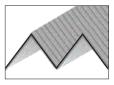
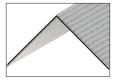

Epicore Roof & Floor Deck Ceiling System

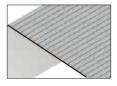
EPIC Metals introduced the original Epicore Roof and Floor Deck Ceiling System in 1968 to offer a system with architectural appeal.


EPIC's original 2" deep Epicore System has been developed over the decades to include four profile depths to increase spans up to 30'. The linear plank ceiling appearance mixes a traditional look with the contemporary aesthetic of an exposed structure.

Epicore panel depths are available in 2", 3 ½", 5" and 6 ½" to offer span capabilities from 6' to 30', depending on the project requirements. Additionally, built in features and benefits have been design engineered into the Epicore Systems to increase system performance including; superior acoustics management, air movement control with air dams, access panels for utilities, a permanent or temporary hanging system, and a specialized coating for high humidity environments with Natacoat[®] (see pages 10-11).

Skydeck® option: ER6.5, ER5, ER3.5 and ER2R may be specified to accommodate Solatube® daylighting systems to bring natural light into any design (see page 11).


Design Examples:

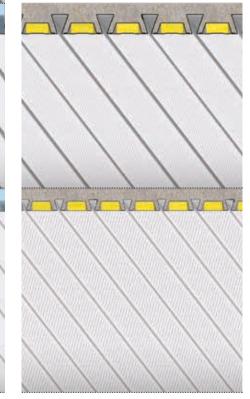

Cathedral Folded Plate

Gambrel Folded Plate

Cathedral


Half Cathedral

Barrel Vaulted



Serpentine

Half Vaulted

Composite Acoustic (pgs.14-23)

EPIC METALS 3

Epicore profiles, when painted with a light color, aid in the reflection of natural light when designed in buildings with clerestory windows. These same principles work well with indirect up-lighting. Acoustical Epicore profiles reduce the noise levels across all sound frequency ranges. The noise reduction coefficients of each profile can be found in the technical tables beginning on page 6. The Epicore rib shape enables the roof deck ceiling to provide a hanging system. Epicore hangers placed in the ribs can be used for hanging signage, speakers, lighting, banners and projection screens. Hangers can be purchased and installed as they are needed, and can be relocated, or removed and reused, at any time during the life of the building (see page 11).

U.L. Approved Pipe Hangers for Fire Protection Systems

Use Ankore and Ankore Lock with ER6.5(A), ER5(A) and ER3.5(A) or $\frac{3}{8}^{\circ}$ Wedge Bolt and Wedge Lock with ER2R(A). Install per EPIC detail sheet EHI7. Connections and parts have been tested by U.L. under standard #203, and in accordance with NFPA 13.

Diaphragm Resistance

ERG. 54 *

ER54 **

ER3.5A

ERZRA

Another benefit of specifying ER6.5(A), ER5(A), ER3.5(A) and ER2R(A) is their inherent ability to resist lateral forces caused by wind or seismic occurrences. The Epicore family of products, when properly designed and attached, can provide an effective and efficient diaphragm bracing system for any structure. Contact EPIC Metals for diaphragm tables.

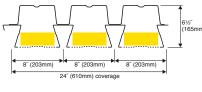
Epicore Wedge Bolt and Ankore Approval

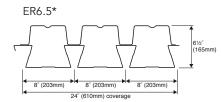
ICC-ES Approval: Report #ESR-2255 (ER2R(A), ER3.5(A) and Epicore (A))

Factory Mutual Rating Approval

FM Listed per Approval Standard 4451 (ER2R(A) and ER3.5(A))

International Code Council Evaluation Service Approval ICC-ES Approval: Report #ESR-2047 (ER2R(A), ER3.5(A) and Epicore (A))


*U.S. Patent Number D5¹¹,580 **U.S. Patent Number D608,464 and D6²²,4¹7 Canadian Patent Number ¹³¹,856



Rowan County Middle School, Morehead, Kentucky Epicore ER6.5A

ACOUSTIC (ER6.5A) NON-ACOUSTIC (ER6.5)

ER6.5A*

*U.S. Patent Number D5¹¹,580

Safe Load Hanging Capacities

	Dock Type	HangarTuna	Game	Design T	hickness	Allowable Static Loads					
	Deck Type	Hanger Type	Gage	(in.)	(mm)	(lbs.)					
	ER6.5(A)	3%″ Ankore	20	0.0358	0.91	62					
			18	0.0474	1.20	91					
			16	0.0600	1.52	126					
	NOTES: 1. Ends of deck sheets must be fastened to supports at every cell. 2. Deck shall be designed to carry these additional hanging loads.										

3. Do not place hangers at sidelaps of deck.

4. Do not overtighten nut on hanger rod as this will spread rib and lessen capacity.

(Finger tight plus ½ turn.) WARNING: FAILURE TO ADHERE TO THE ABOVE NOTES MAY CAUSE HANGERS TO PULL OUT OF

DECK RIBS!

ER6.5A & ER6.5 Section Properties (per foot of width)

Deck Type	Gage	Wt. (psf)	I _D (in ⁴)	S _p (in³)	Allowable Reaction (plf)*					
	20 / 20	5.6	8.52	2.05	809					
ER6.5A	18 / 18	7.5	11.73	3.08	1355					
	16 / 16	9.4	15.09	4.27	2082					
	20 / 20	5.8	9.06	2.11	809					
ER6.5	18 / 18	7.7	12.48	3.18	1355					
	16 / 16	9.7	16.05	4.40	2082					
*Minimum end support bearing length (See note 5 below):										

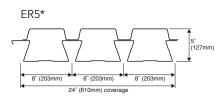
End = 3"

ER6.5A Noise Reduction Coefficients

Deck		Ab	sorption	Coefficie	nts		NRC
Туре	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	NRC
ER6.5A	0.48	1.22	1.07	0.95	0.92	0.76	1.05

In accordance with ASTM C423 and E795. Consult EPIC Metals Corporation for other test results and individual reports.


The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest 0.05.


ER6.5(A) Maximum Sprinkler Pipe Diameter

Deck Type	Hanger Type	Gage	Diameter (in.)
ER6.5(A)	³ ⁄⁄8″ Ankore	20, 18, 16	4

ACOUSTIC (ER5A) NON-ACOUSTIC (ER5)

*U.S. Patent Number D608,464 and D6²²,4¹⁷ Canadian Patent Number ¹³¹,856

Safe Load Hanging Capacities

	Deals Tune	HenneyTune	6	Design T	hickness	Allowable Static Loads
_	Deck Type	Hanger Type	Gage	(in.)	(mm)	(lbs.)
		³⁄%″ Ankore	20	0.0358	0.91	62
	ER5(A)		18	0.0474	1.20	91
			16	0.0600	1.52	126

NOTES: 1. Ends of deck sheets must be fastened to supports at every cell. 2. Deck shall be designed to carry these additional hanging loads. 3. Do not place hangers at sidelaps of deck.

4. Do not overtighten nut on hanger rod as this will spread rib and lessen capacity. (Finger tight plus ½ turn.) WARNING: FAILURE TO ADHERE TO THE ABOVE NOTES MAY CAUSE HANGERS TO PULL OUT OF

DECK RIBS!

ER6.5A & ER6.5 Load Table: Uniform Total Service Load (Dead and Live), PSF

Deck Type	No.	Gama	Span Length Center to Center of Supports (ft.)																		
реск туре	spans	Gage	12	14	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
	1	20/20	135/324	116/204	101/137	95/114	90/96	85/82	81/70	74/58	68/48	62/40	57/34	52/29	-	-	-	-	-		
ER6.5A		1	1	18/18	266/466	194/281	169/188	159/157	151/132	137/112	123/96	112/79	102/66	93/55	86/46	79/39	73/34	68/29	-	-	-
		16/16	347 / 500	297/361	260/242	236/202	211/170	189/144	171/124	155/102	141/85	129/71	119/60	109/51	101/43	94/37	87 / 32	81/28	-		
		20/20	135/344	116/217	101/145	95/121	90/102	85/87	81/74	77/61	70/51	64/43	59/36	54/30	50/26	-	-	-	-		
ER6.5	1	18/18	226/474	194/299	169/200	159/167	151/141	141/119	127/102	115/84	105/70	96 / 59	88/49	81/42	75/36	70/31	65/27	-	-		
	-	16/16	347 / 500	297 / 384	260/257	244/215	217/181	195/154	176/132	160/108	145/90	133/75	122/64	113/54	104/46	97 / 40	90/34	84/30	78/26		

If higher loads or longer spans are required, contact Epic Metals Corporation

Notes: 1. Loads are based on ASD Design.

s: 1. Loads are based on ASD Design. 2. Uniform load values listed on the left side of the box, 100/50, are governed by stress or web crippling and the values listed on the right side, 100/50, are governed by deflection. 3. The deflection criteria used for generating the tables above were L/240 or 1° maximum. The Engineer of Record shall calculate the allowable uniform load if a different deflection criteria is required.

4. Stress governed values assume a maximum allowable stress of 24 ksi.

5. Minimum end support bearing length is shown above. If a shorter bearing length is used, check safe reaction table on page 13.

ER5A & ER5 Load Table: Uniform Total Service Load (Dead and Live), PSF

Deck Type	No.	No. Gage	Span Length Center to Center of Supports (ft.)											
реск туре	spans	Gage	12	14	16	17	18	19	20	21	22	23	24	25
		20/20	135/173	113/109	87/73	77/61	69/51	62/44	56/37	50/31	46/26	42/21	-	-
ER5A	1	18/18	226/238	166/150	127 / 101	112/84	100/71	90/60	81/51	74/42	67 / 35	61/29	56/25	52/21
		16/16	306/313	224/197	172/132	152/110	136/93	122/79	110/68	100/56	91/46	83/39	76/33	70/28
		20/20	135/184	116/116	89/78	79/65	71/55	63/46	57 / 40	52/33	47 / 27	43/23	-	-
ER5	1	18/18	226/253	171/160	131/107	116/89	103/75	93/64	84 / 55	76/45	69/37	63/31	58/26	54/24
		16/16	316/332	232/209	178/140	157/117	140/99	126/84	114/72	103 / 59	94 / 49	86/41	79/35	73/29

If higher loads or longer spans are required, contact Epic Metals Corporation

Notes: 1. Loads are based on ASD Design.

 is: 1. Loads are based on ASD Design.
2. Uniform load values listed on the left side of the box, 100/50, are governed by stress or web crippling and the values listed on the right side, 100/50, are governed by deflection.
3. The deflection criteria used for generating the tables above were L/240 or 1[°] maximum. The Engineer of Record shall calculate the allowable uniform load if a different deflection criteria is required. 4. Stress governed values assume a maximum allowable stress of 24 ksi.

5. Minimum end support bearing length is shown above. If a shorter bearing length is used, check safe reaction table on page 13.

SPANS 12´-30´

ER5A & ER5 Section Properties (per foot of width)

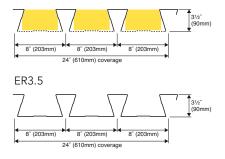
Deck Type	Gage	Wt. (psf)	I _D (in⁴)	S _p (in³)	Allowable Reaction (plf)*
	20 / 20	5.0	4.56	1.39	809
ER5A	18 / 18	6.7	6.27	2.03	1355
	16/16	8.4	8.23	2.75	2082
	20/20	5.2	4.85	1.43	809
ER5	18 / 18	6.9	6.67	2.09	1355
	16/16	8.7	8.75	2.84	2082

*Minimum end support bearing length (See note 5 below): End = 3"

ER5A Noise Reduction Coefficients

Deck		Absorption Coefficients										
Туре	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	NRC					
ER5A	0.29	1.15	1.08	0.94	0.91	0.73	1.00					

In accordance with ASTM C423 and E795. Consult EPIC Metals Corporation for other test results and individual reports


The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest 0.05.

ER5(A) Maximum Sprinkler Pipe Diameter

Deck Type	Hanger Type	Gage	Diameter (in.)
ER5(A)	3⁄8″ Ankore	20, 18, 16	4

ACOUSTIC (ER3.5A) NON-ACOUSTIC (ER3.5)

ER3.5A

ER3.5 Approvals

Factory Mutual Standard 4451 ICC-ES Approval: ESR-2047 U.L. Design Numbers P908, P921

Safe Load Hanging Capacities

	Deck Type	Hanger Type	Game	Design T	hickness	Allowable Static Loads				
	реск туре	naliyer iype	Gage	(in.)	(mm)	(lbs.)				
		³ ⁄8″ Ankore	20	0.0358	0.91	62				
	ER3.5(A)		18	0.0474	1.20	91				
	.,		16	0.0600	1.52	126				
NOTES: 1. Ends of deck sheets must be fastened to supports at every cell.										

2. Deck shall be designed to carry these additional hanging loads. 3. Do not place hangers at sidelaps of deck.

4. Do not overtighten nut on hanger rod as this will spread rib and lessen capacity. (Finger tight plus ½ turn.)

WARNING: FAILURE TO ADHERE TO THE ABOVE NOTES MAY CAUSE HANGERS TO PULL OUT OF DECK RIBS!

ER3.5A & ER3.5 Load Table: Uniform Total Service Load (Dead and Live), PSF

DealeTrees	No. Cara							Span Length Center to Center of Supports (ft.)								
Deck Type	spans	Gage	12	13	14	15	16	17	18	19	20	21	22	23	24	25
		20	76/65	64/51	56/41	48/33	43/28	-	-	-	-	-	-	-	-	-
		19	93/78	80/61	69/49	60/40	53/33	47/27	-	-	-	-	-	-	-	-
	1	18	110/89	94/70	81/56	70/46	62/38	55/31	49/26	-	-	-	-	-	-	-
		16	148/114	126/89	109/72	95/58	83/48	74/40	66/34	59/29	53/25	-	-	-	-	-
		20	84/157	72/124	62/99	54/81	48/66	42/55	38/47	34/40	30/34	28/28	-	-	-	-
552 54		19	100/187	85/147	73/118	64/96	56/79	50/66	44/55	40/47	36/40	33/33	30/28	-	-	-
ER3.5A	2	18	114/214	98/168	84/135	73/110	64/90	57/75	51/63	46/54	41/46	37/38	34/32	31/26	-	-
		16	148/274	126/215	109/172	95/140	83/115	74/96	66/81	59/69	53/59	48/49	44/40	40/34	37/28	34/24
		20	106/123	90/97	78/78	68/63	59/52									
	_	19	125/146	107/115	92/92	80/75	70/62]			40 Feat	Mawinauna Cha	at Longth			
	3	18	143/168	122/132	105/105	92/86	80/71	48 Foot Maximum Sheet Length								
		16	185/214	157/168	136/135	118/110	104/90									
		20	77/70	65/55	56/44	49/36	43/29	-	-	-	-	-	-	-	-	-
		19	96/82	81/65	70/52	61/42	54/35	48/29	-	-	-	-	-	-	-	-
	1	18	112/95	96/74	82/60	72/48	63/40	56/33	50/28	-	-	-	-	-	-	-
		16	151/121	129/95	111/76	97/62	85/51	75/42	67/36	60/30	54/26	-	-	-	-	-
		20	90/167	77/132	66/105	58/86	51/71	45/59	40/50	36/42	32/36	29/30	-	-	-	-
FD 2 F	2	19	107/199	91/156	78/125	68/102	60/84	53/70	47/59	43/50	38/43	35/35	32/29	-	-	-
ER3.5	2	18	122/228	104/179	90/143	78/117	69/96	61/80	54/67	49/57	44/49	40/40	36/34	33/28	-	-
		16	157/291	133/229	115/183	100/149	88/123	78/102	70/86	62/73	56/63	51/52	47/43	43/36	39/30	36/26
		20	113/131	96/103	83/83	72/67	63/55									
	2	19	133/155	114/122	98/98	85/80	75/66	6 48 Foot Maximum Sheet Length								
	3	18	153/178	130/140	112/112	98/91	86/75				40 FUUL		et Length			
		16	196/228	167/179	144/143	125/117	110/96									

If higher loads or longer spans are required, contact Epic Metals Corporation. Notes: 1. Loads are based on ASD Design.

2. Uniform load values listed on the left side of the box, 100/50, are governed by stress or web crippling and the values listed on the right side, 100/50, are governed by deflection.

3. The deflection criteria used for generating the tables above were L/240 or 1" maximum. The Engineer of Record shall calculate the allowable uniform load if a different deflection criteria is required. 4. Stress governed valu 24 ksi.

above. If shorter bearing lengths are used, check safe reaction table on page 13. 5. Minimum end and i

ER3.5A & ER3.5 Section Properties

(per foot of width)

Deck Type	Gage	Wt. (psf)	I _D (in ⁴)	S _p (in ³)	S _N (in³)	Allov Reactio	vable on (pli
ijpe		(621)	(, (,	(1117)	End*	Int.	
	20	3.0	1.72	0.68	0.76	706	151
	19	3.6	2.04	0.84	0.90	942	200
ER3.5A	18	4.1	2.34	0.99	1.03	1189	251
	16	5.1	2.99	1.33	1.33	1838	383
	20	3.2	1.83	0.69	0.81	706	151
	19	3.8	2.17	0.86	0.96	942	200
ER3.5	18	4.3	2.49	1.01	1.10	1189	251
	16	5.4	3.18	1.36	1.41	1838	383

*Minimum end and interior support bearing lengths (See note 5 below): $End = 2^{"}$ Interior = 4"

ER3.5A Noise Reduction Coefficients

Deck		Absorption Coefficients							
Туре	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	NRC		

ER3.5A 0.32 1.00 1.00 0.96 0.98 0.73 1.00 In accordance with ASTM C423 and E795. Consult EPIC Metals Corporation for other test results and individual reports.

The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest 0.05

ER3.5(A) Maximum Sprinkler Pipe Diameter

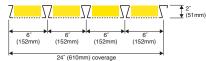
Deck Type	Hanger Type	Gage	Diameter (in.)
ER3.5(A)	3⁄%″ Ankore	20, 18, 16	4

	25										
	-	D	Deck Type	No.	Gage						т
	-		shalls	spans	•	6´0″	6′6″	7´0″	7′6″	8′0″	
	-				20	147/134	125/105	108/84	94/68	83/56	Τ
	-			1	18	204/179	174/141	150/113	131/92	115/76	T
-					16	258/225	220/177	189/142	165/115	145/95	T
-					20	129/322	110/253	95/203	82/165	73/136	T
- 34/24			ER2RA	2	18	178/432	151/340	131/272	114/221	100/182	t
34/24					16	240/500	204/426	176/341	154/277	135/228	t
					20	161/252	137/198	118/159	103/129	91/106	t
				3	18	222/338	189/266	163/213	142/173	125/143	t
					16	300/424	256/333	220/267	192/217	169/179	t
-	-				20	151/143	129/112	111/90	97/73	85/60	Ť
-				1	18	209/192	178/151	153/121	134/98	118/81	t
					16	262/240	223/189	193/151	168/123	148/101	t
_			ŀ		20	138/344	117/271	101/217	88/176	78/145	t
_			ER2R	2	18	191/461	163/363	140/290	122/236	108/195	t
-					16	253/500	216/455	186/364	162/296	143/244	t
36/26					20	172/269	147/212	127/170	110/138	97/114	t
				3	18	239/361	204/284	176/227	153/185	134/152	
				5	16	317/452	270/356	233/285	203/232	178/191	

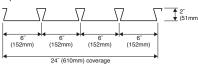
If higher loads or longer spans are required, contact Epic Metals Corporation

Notes: 1. Loads are based on ASD Design.

2. Uniform load values listed on the left side of the box, 100/50, are governed by stress or web crippling and the values listed on the right side, 100/50, are governed by deflection.


4. Stress governed values assume a maximum allowable stress of 24 ksi.

5. Minimum end and interior support bearing lengths are shown above. If shorter bearing lengths are used, check safe reaction table on page 13.


Epicore[®] ER2R **Technical Tables**

ACOUSTIC (ER2RA) NON-ACOUSTIC (ER2R)

Epicore ER2RA

Epicore ER2R

ER2R Approvals

Factory Mutual Standard 4451 ICC-ES Approval: ESR-2047 U.L. Design Numbers P908, P921

Safe Load Hanging Capacities

Deck Type	Hanger Type	Gage	Design T	hickness	Allowable Static Loads
реск туре	панует туре	uaye	(in.)	(mm)	(lbs.)
		20	0.0358	0.91	47
ER2R(A)	3⁄%″ Wedge Bolt	18	0.0474	1.20	81
	Ŭ	16	0.0600	1.52	128

NOTES: 1. Ends of deck sheets must be fastened to supports at every cell. 2. Deck shall be designed to carry these additional hanging loads.

3. Do not place hangers at sidelaps of deck.

4. Do not overtighten nut on hanger rod as this will spread rib and lessen capacity

(Finger tight plus ½ turn.)

WARNING: FAILURE TO ADHERE TO THE ABOVE NOTES MAY CAUSE HANGERS TO PUL DFCK RIBS!

ER2RA & ER2R Load Table: Uniform Total Service Load (Dead and Live), PSF

ues assume a maximum allowable st	ress	of 2
interior support bearing lengths are	show	n a

SPANS

12´-25´

ER2RA & ER2R Section Properties (per foot of width)

Deck Type	Gage	Wt. (psf)	I _D (in⁴)	S _p (in ³)	S _N (in ³)		vable on (plf)
		4,	()	()	()	End*	Int.*
	20	2.6	0.44	0.33	0.29	1042	2136
ER2RA	18	3.4	0.59	0.46	0.40	1729	3504
	16	4.3	0.74	0.58	0.54	2639	5310
	20	2.7	0.47	0.34	0.31	1042	2136
ER2R	18	3.6	0.63	0.47	0.43	1729	3504
	16	4.5	0.79	0.59	0.57	2639	5310

*Minimum end and interior support bearing lengths (See note 5 below): End = $2^{''}$ Interior = $4^{''}$

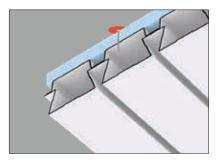
ER2RA Noise Reduction Coefficients

Deck	k Absorption Coefficients							
Туре	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	NRC	
ER2RA	0.26	0.60	1.18	0.98	1.00	0.91	0.95	

In accordance with ASTM C423 and E795. Consult EPIC Metals Corporation for other test results and individual reports

The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest 0.05.

ER2R(A) Maximum Sprinkler Pipe Diameter


ipacity.	Deck Type	Hanger Type	Gage	Diameter (in.)
LL OUT OF	5000(4)	³⁄%″ Wedge Bolt	20	3
	ER2R(A)	³⁄‰″ Wedge Bolt	18, 16	4

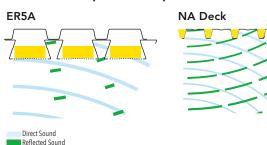
Span Length Center to Center of Supports (ft./in.)

•	•								
8′6″	9′0″	9′6″	10′0″	10′6″	11′0″	12′0″	13′0″	14′0″	15´0″
73/47	65/40	59/34	53/29	-	-	-	-	-	-
102/63	91/53	82/45	74/39	67/33	61/29	-	-	-	-
128/79	115/67	103/57	93/49	84/42	77/37	64/28	-	-	-
64/113	57/95	51/81	46/70	42/60	38/52	32/40	27/32	-	-
89/152	79/128	71/109	64/93	58/81	53/70	44/54	38/42	33/34	28/28
120/190	107/160	96/136	86/117	78/101	71/88	60/68	51/53	44/43	38/35
80/89	72/75	64/63	58/54	53/47	48/41	40/31	-	-	-
111/119	99/100	89/85	80/73	73/63	66/55	56/42	47/33	-	-
149/149	133/126	120/107	108/92	98/79	89/69	75/53	64/42	55/33	48/27
75/50	67/42	60/36	54/31	-	-	-	-	-	-
104/67	93/57	83/48	75/41	68/36	62/31	-	-	-	-
131/84	117/71	105/61	94/52	86/45	78/39	66/30	-	-	-
69/121	61/102	55/87	50/74	45/64	41/56	34/43	29/34	-	-
95/162	85/137	76/116	69/100	62/86	57/75	48/58	41/45	35/36	31/30
126/203	113/171	101/146	91/125	83/108	75/94	63/72	54/57	47/46	41/37
86/95	77/80	69/68	62/58	56/50	51/44	43/34	37/26	-	-
119/127	106/107	95/91	86/78	78/67	71/59	60/45	51/35	44/28	-
158/159	141/134	126/114	114/98	103/84	94/73	79/57	67/44	58/36	51/29

3. The deflection criteria used for generating the tables above were L/240 or 0.75" maximum. The Engineer of Record shall calculate the allowable uniform load if a different deflection criteria is required.

Standard Features with Epicore®

Conceals Fasteners All of the Epicore panels conceal the roofing system fasteners.


Sidelap The dovetail ribs of the sidelaps conceal the fasteners.

Epicore **Options**

Epicore's Superior Acoustic Properties

Acoustic Acoustic roof and floor deck ceiling systems Element are specified as an economical means of Acoustic reducing noise levels in building interiors, and Perforation offer an attractive appearance without adding an additional ceiling. NRC values are the noise absorption averages over a range of frequencies. The higher the NRC value, the greater the amount of noise that is absorbed over the frequency ranges. An NRC value of 1.00 would mean that 100% of the noise that strikes the panel is absorbed, whereas an NRC value of .60 would mean that only 60% of the sound that strikes the panel surface is absorbed and 40% of the sound is reflected back. Lower NRC values can contribute to creating reverberation (an echo effect) that makes speech less intelligible and can create a sense of noise amplification. Many building factors such as room size, layout, shape, materials specified, windows, the number of occupants, and noise sources also affect noise levels. Therefore, EPIC Metals recommends that these factors be considered prior to the preparation of acoustical design specifications. Displayed below, the Epicore profiles acoustical perforations are in the large flat area, which are parallel to the floor. This results in significantly better sound absorbing qualities of the Epicore panels.

Sound Absorption Comparison

Natacoat®

Natatoriums create a highly humid and corrosive interior environment for building materials. EPIC Natacoat is an innovative, specialized coating that has been applied to protect long span, acoustic roof and floor deck ceiling systems in such harsh settings for over 20 years.

Prior to panel fabrication, all surfaces of the galvanized steel are degreased and cleaned by a chemical conversion coating before applying a primer to increase bonding capabilities. Following the prime coat, the panels are fabricated and the Natacoat specialized coating is applied to the ceiling surface. Natacoat is a factory-applied, oven-baked polyamide epoxy. The finish coat is applied after installation. Contact EPIC for special paint specifications for natatoriums or other high humidity applications.

SkyDeck[®]

Natural light makes spaces appear larger and reveals true colors in the interior of buildings. In the past, to incorporate skylights with a long-span roof deck ceiling system required that the skylight be framed with structural steel, detracting from the open appearance of the system. Skydeck with the Solatube® Daylighting System captures ambient light as well as direct light, enabling it to provide exceptional lighting even on cloudy days. Lighting normally consumes approximately 40 percent of the energy used in commercial buildings according to the Electric Power Research Institute. Energy costs can be reduced in structures using Skydeck as a day-lighting technique. Skydeck can

Air Dams

EPIC Metals understands

the importance of reducing energy loss in buildings. This is the reason that EPIC pioneered the use of specially designed air dams to prevent air movement in roof and floor deck ceiling panels that cantilever outside of a building. Where these panels are partially inside the building and transition to the outside, a barrier is necessary to prevent the exterior unconditioned air from moving through the conditioned spaces.

EPIC Metals specially designed air dams to help reduce the building energy usage when roof or floor deck ceiling panels extend from the interior of a building to the exterior of the building.

Access Panel

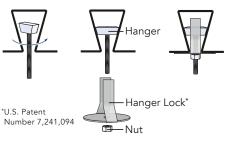
With ER6.5(A), ER5(A), ER3.5(A) and ER2R(A), it is possible to easily access utilities that have been located within the roof deck ceiling system. Access panels come in various sizes and configurations, are placed according to architectural drawings and are provided during the manufacturing process. The removable panels are fabricated to match the finish, size, and shape of the adjacent ceiling surface. The result is a clean, uninterrupted look while providing a simple and convenient access to hidden utilities. ER2R(A) access panels lack the clearance for sprinkler line but can accommodate other utilities.

be an important contributor to achieving Leadership in Energy and Environmental Design (LEED®) points.

EPIC Metals' Skydeck specified to accept Solatube® Daylighting System, transfers up to 500% more daylight than other tubular skylight systems with the brightest, cleanest, and whitest natural light possible. This advantage is particularly significant in low-angle light conditions, such as during the early morning and late afternoon, and in the winter months when the sun is low on the horizon. Skydeck has minimal heat loss or gain between the interior and exterior because the Solatubes work like a dual glazed window.

> Non-Acoustic at Exterior Air Dam Acoustic Interior

Windgard®


Solatube is a registered trademark owned by Solatube International Inc. LEED® is a trademark owned by the U.S. Green Building Council and is used with permission.

ER5RA with Skydeck Option U.S. Patent Number 6,813,864

Hanging Feature **v**

Insert the Epicore hanger with the head parallel to the Epicore deck. Rotate the hanger 90° and pull down to seat. After the hanger is seated, install the proper hanger lock and nut.

EPIC Metal's structural roof deck ceiling systems utilize acoustic elements to reduce interior noise and sound reverberation. Dislodged or missing acoustic elements can greatly reduce the system's effectiveness to control noise. Dislodging can occur during product transportation or installation in ER6.5A and ER5A.

EPIC Metals addresses this issue with Windgard, a system used in ER6.5A and ER5A to ensure that acoustic insulation stays in place from panel fabrication to final installation. The EPIC Windgard system has been laboratory tested to maintain acoustic element positions at wind speeds up to 105 mph. Windgard ensures the acoustic properties are preserved, delivering expected noise reduction coefficients and effectiveness.

Epicore[®] Roof Deck Ceiling Systems Specifications

NOTES: OMIT UNDERLINED AREAS FOR NON-ACOUSTIC APPLICATIONS

For the additional specification language covering factory reinforced openings to accommodate SkyDeck® for Solatube® skylights, contact EPIC Metals.

PART ¹: GENERAL

1.1 SUMMARY

The requirements of this specification section include all materials, equipment, and labor necessary to furnish and install an Acoustical Roof Deck System.

- A. The deck shall serve as an <u>acoustical</u> ceiling and a structural roof deck as indicated on the contract drawings.
- B. <u>Acoustical</u> Roof Deck shall provide an exposed bottom surface that is substantially flat. The narrow rib openings of the Acoustical Roof Deck panels shall provide the appearance of a linear ceiling. Fasteners for sidelaps and overlying roofing materials shall be concealed within the depth of the dovetail-shaped ribs.
- C. 6.5", 5" and 3.5" panels: Ankore hanging devices that are specially configured to fit into the dovetail-shaped ribs of the 6.5", 5" and 3.5" Acoustical Roof Deck panels shall be available. These hanging devices shall be utilized wherever any related work is suspended from 6.5", 5" and 3.5" Acoustical Roof Deck. Ankore hanging devices shall be furnished by the installer of the related work unless otherwise indicated.

 \mathcal{Z}' panel: Wedge Nut hanging devices (supplied with Wedge Locks) that are specially configured to fit into the dovetail-shaped ribs of the Acoustical Roof Deck panels shall be available. These hanging devices shall be utilized wherever any related work is suspended from the Acoustical Roof Deck. Wedge Nut hanging devices and Wedge Locks shall be furnished by the installer of the related work unless otherwise indicated

1.2 RELATED WORK

- The following related work is not part of this specification section:
- A. Structural Steel: Supplementary framing.
- B. Roofing: Other than structural roof deck and accessories. Installation of acoustic elements
- C. Painting: Preparation for and application of field painting.
- D. Mechanical: Attachments to the Acoustical Roof Deck.
- E. Electrical: Attachments to the Acoustical Roof Deck.

13 SUBMITTALS

Submit the following items in accordance with the conditions of the contract and appropriate specification sections:

- A. Product data for <u>Acoustical</u> Roof Deck and hanging devices including material types, dimensions, finishes, load capacities, and noise reduction coefficients.
- B. Erection drawings for Acoustical Roof Deck and related accessory items showing profiles and material thicknesses, layout, anchorage, and openings as dimensioned on the structural drawings.

1.4 REFERENCE STANDARDS

- A. Section Properties: Shall be computed in accordance with the American Iron and Steel Institute (AISI) Specification for the Design of Cold-Formed Steel Structural Members
- B. Welding: Shall comply with applicable provisions of American Welding Society (AWS) D1.3 Structural Welding Code—Sheet Steel.
- C. Noise Reduction Coefficient: Shall be verified by the results of sound absorption tests conducted in accordance with ASTM C423 and E795. A minimum NRC of 1.05 shall be provided for 6.5" panel. A minimum NRC of 1.00 shall be provided for 5" and 3.5" panels. A minimum NRC of 0.95 shall be provided for 2" panel. Copies of the sound absorption test shall be submitted upon request.

1.5 QUALITY ASSURANCE

A. Manufacturer shall have been regularly engaged in the production of an acoustical roof deck section with dovetail-shaped ribs and the specified assembly for a period of at least 10 years.

- B. 3.5" and 2" <u>Acoustical</u> Roof Deck shall have been tested and approved by Factory Mutual Research Corporation for use in Class 1 insulated steel deck roof construction without the use of dens-dek as a fire barrier. Acoustical Roof Deck shall be listed in the FM Approval Guide. All panels shall bear the appropriate FM approved label.
- C. 3.5" and 2" Acoustical Roof Deck shall be approved by the International Code Council Evaluation Service (ICC-ES) for use as a structural roof deck and shear diaphragm and have a valid ICC-ES evaluation report.

PART ²: PRODUCTS

².¹ MANUFACTURER

- A. In accordance with the requirements of this specification section, provide products manufactured by EPIC Metals, Rankin, PA.
- B. Substitutions: (Under Provisions of Division 01) Not permitted.

2.2 MATERIALS

- A. <u>Acoustical</u> Roof Deck panels shall be cold-formed from steel sheets conforming to ASTM-A-653, Grade 40, or equal, having a minimum yield strength of 40,000 psi.
- B. Before forming, the steel sheets shall have received a hot-dip protective coating of zinc conforming to ASTM A924, Class G60 or G90.

6.5" and 5" Primer Paint Option—The bottom ceiling surface of the panel shall be prime painted at the factory after forming and welding. Before painting, the galvanized steel shall be chemically cleaned and coated with a pretreatment followed by a coat of manufacturer's standard white prime paint and then oven-cured. Compatibility of field applied finish paint shall be the responsibility of the painting contractor.

3.5" and 2" Primer Paint Option—Prior to forming, galvanized steel shall be chemically cleaned and pre-treated followed by an oven-cured epoxy primer and a second coat of oven-cured polyester primer paint applied to both sides in the manufacturer's standard color of off-white. Compatibility of field applied finish paint with factory applied primer paint shall be the responsibility of the painting contractor.

3.5" and 2" Finish Paint Option—Prior to forming, galvanized steel shall be chemically cleaned and pre-treated followed by an oven-cured epoxy primer and a second coat of oven-cured polyester paint applied to both sides. After factory painting is complete, a plastic removable film shall be applied to the bottom surface of the panels to protect paint finish during manufacturing, shipping, and handling. The protective film is to be removed by the erector prior to installation.

Paint Option—For specialized painting systems that are recommended for Natatoriums and other high humidity applications, contact EPIC Metals.

C. The minimum uncoated thickness of material supplied shall be within 5% of the design thickness.

2,3 FABRICATION

A. The 6.5" deep Acoustical Roof Deck shall have continuous dovetail shaped ribs spaced 8" on center

The 5" deep Acoustical Roof Deck shall have continuous dovetail shaped ribs spaced 8" on center.

The 3.5" deep Acoustical Roof Deck panels shall have continuous dovetail-shaped ribs spaced 8" on center.

The 2^r deep <u>Acoustical</u> Roof Deck panels shall have continuous dovetail-shaped ribs spaced 6" on center.

- B. The design thickness and minimum section properties shall be indicated on the contract drawings
- C. Acoustical Roof Deck panels shall have full depth positive registering sidelaps that can be fastened by welds or screws
- D. Acoustical Roof Deck panels shall be fabricated with perforations. Perforated areas shall be located in the areas between the dovetailshaped ribs.

².4 ACCESSORIES

A. Where panels continue from the interior of the building through to the exterior of the building (for example as a cantilever canopy): the panels will be perforated on the interior and not perforated on the exterior, air dams will be provided to block the movement of conditioned air from the interior of the building to the exterior

- B. Wedge Bolt hanging devices (which include Wedge Locks) or Ankore hanging devices (which include Ankore Locks) shall be installable and relocatable along the length of the interior ribs of the Acoustical Roof Deck panels. Manufacturer's product data shall be consulted for minimum spacing, load capacities, and proper installation procedure of the Wedge Bolt or Ankore Hanging devices.
- C. Sump pans, ridge, valley, transition, and eave plates shall be provided as indicated by the manufacturer's standards.
- D. Manufacturer's standard profile closures shall be provided as indicated on the contract drawings
- E. Acoustic elements shall be provided for installation above the perforations in the bottom flat area between the dovetail-shaped ribs. To facilitate field painting of the perforated surfaces, the sound absorbing elements shall be supported above the surface on corrosion resistant spacers. Sound absorbing elements and spacers shall be furnished under this specification section for installation by others for 3.5" and 2".

6.5" and 5" Acoustic sound-absorbing elements shall be factory installed. The acoustic elements will be supported above the bottom panel be either individual stand-offs or continuous mesh to avoid plugging the perforated <u>holes when field painting</u>.

F. 6.5", 5", 3.5" and 2" Acoustical panels requiring access openings shall be shown on the structural or architectural drawings. Openings shall be shop-fabricated in the panel area between ribs, 8" wide for 6.5", 5" or 3.5" Acoustical panels and 6" wide for 2" Acoustical panels. Access covers shall match the finish and profile of the adjacent deck surface, including perforations.

PART 3: EXECUTION

3.1 GENERAL

Acoustical Roof Deck panels and accessories shall be installed in strict accordance with the manufacturer's approved erection drawings, installation instructions, the Steel Deck Institute (SDI) Manual for Construction with Steel Deck, and all applicable safety regulations.

3.2 BEFORE INSTALLATION

- A. The supporting frame and other work relating to the <u>Acoustical</u> Roof Deck shall be examined to determine if this work has been properly completed.
- B. All components of the Acoustical Roof Deck System shall be protected from significant damage during shipment and handling. If storage at the jobsite is required, bundles or packages of these materials shall be elevated above the ground, sloped to provide drainage, and protected from the elements with a ventilated waterproof covering.

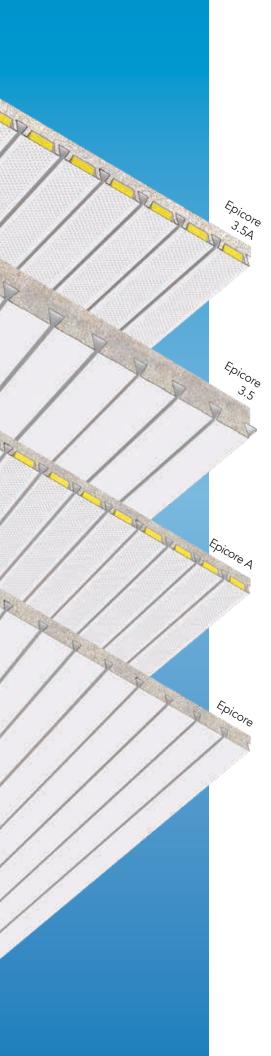
3.3 INSTALLATION

- A. Bundles or packages of Acoustical Roof Deck System components shall be located on supporting members in such a manner that overloading of any individual members does not occur.
- B. Before being permanently fastened, <u>Acoustical</u> Roof Deck panels shall be placed with ends accurately aligned and adequately bearing on supporting members. Proper coverage of the Acoustical Roof Deck panels shall be maintained. Care must be taken by the erector to maintain uniform spacing of the bottom rib opening (equal to the openings in the profiled sheet) at the sidelaps. Consistent coverage shall be maintained so that panels located in adjacent bays will be properly aligned.
- C. Field cutting of the <u>Acoustical</u> Roof Deck panels shall be performed in a neat and precise manner. Only those openings shown on the structural drawings shall be cut. Other openings shall be approved by the structural engineer and cut by those requiring the opening
- D. <u>Acoustical</u> Roof Deck panels shall be fastened to all supporting members with $\frac{34''}{4}$ diameter puddle welds at a nominal spacing of $\frac{1}{8}$ on center or less as indicated on the manufacturer's erection drawings.
- E. Mechanical fasteners may be substituted for puddle welds to permanently fasten Acoustical Roof Deck panels to supporting members. The mechanical fastener manufacturer shall provide documentation as to the equivalent load capacity and proper installation procedure for each type of fastener being used.
- F. Sidelaps of <u>Acoustical</u> Roof Deck panels shall be fastened by welds or screws at a spacing of 36" on center or less as indicated on the manufacturer's erection drawings. Sides of Acoustical Roof Deck panels that are located at perimeter edges of the building shall be fastened to supporting members at a spacing of 36" on center or less as indicated on the manufacturer's erection drawings.

G. Sump pans, ridge, valley, transition, eave plates, and supplied reinforcement for small openings shall be fastened as indicated on the manufacturer's erection drawings.

3.4 AFTER INSTALLATION

- A. Construction loads that could damage the <u>Acoustical</u> Roof Deck such as heavy concentrated loads and impact loads shall be avoided. Planking shall be used in all high traffic areas.
- B. Prior to the placement of the sound absorbing elements, the top surface of the Acoustical Roof Deck shall be cleaned of all debris, grease, oil, and other foreign substances. Cleaning the bottom surface of the Acoustical Roof Deck for field painting shall be the responsibility of the contractor.
- C. Galvanizing and other coatings that are damaged must be field repaired using appropriate methods and shall be the responsibility of the contractor.
- D. Sound absorbing elements shall be dry before installation of the elements or overlying roof materials.


Epicore[®] Safe Support Reaction Tables

Safe Support Reaction Tables for End and Interior Supports

			Allowable Reaction (plf)					
Deck	Gage	Gage End Bearing Length (in)			Int. Bearing Length (in)			
Туре		1.5	2	3	3	4	5	
	20	644	706	809	1386	1517	1632	
ER5(A)*	18	1091	1189	1355	2305	2510	2690	
ER6.5(A)*	16	1693	1838	2082	3533	3831	4094	
	20	644	706	809	1386	1517	1632	
	19	862	942	1076	1835	2003	2151	
ER3.5(A)	18	1091	1189	1355	2305	2510	2690	
	16	1693	1838	2082	3533	3831	4094	
ER2R(A)	20	951	1042	1195	1952	2136	2298	
	18	1585	1729	1969	3218	3504	3757	
	16	2430	2639	2989	4896	5310	5674	

*Gage of both top hat and bottom plate sections indicated Simple span: ER = 0.50WL Double Span: ER = 0.375WL

IR = 1.25WI

Epicore® Composite Floor Deck Ceiling Systems

Epicore Composite Floor Deck Ceiling Systems combine the structural advantages of a flat slab with the time and cost saving advantages of a permanent form. Due to the dovetail rib shape, the slab can support greater loading than a typical reinforced concrete slab of the same depth. The shape of the profile also supplies a simple, economical, and permanent hanging system. The Epicore Floor Deck additionally furnishes the total positive reinforcing for the composite slab and serves as a permanent form for the concrete. See page 16 or 17 for unprotected U.L. fire resistance ratings.

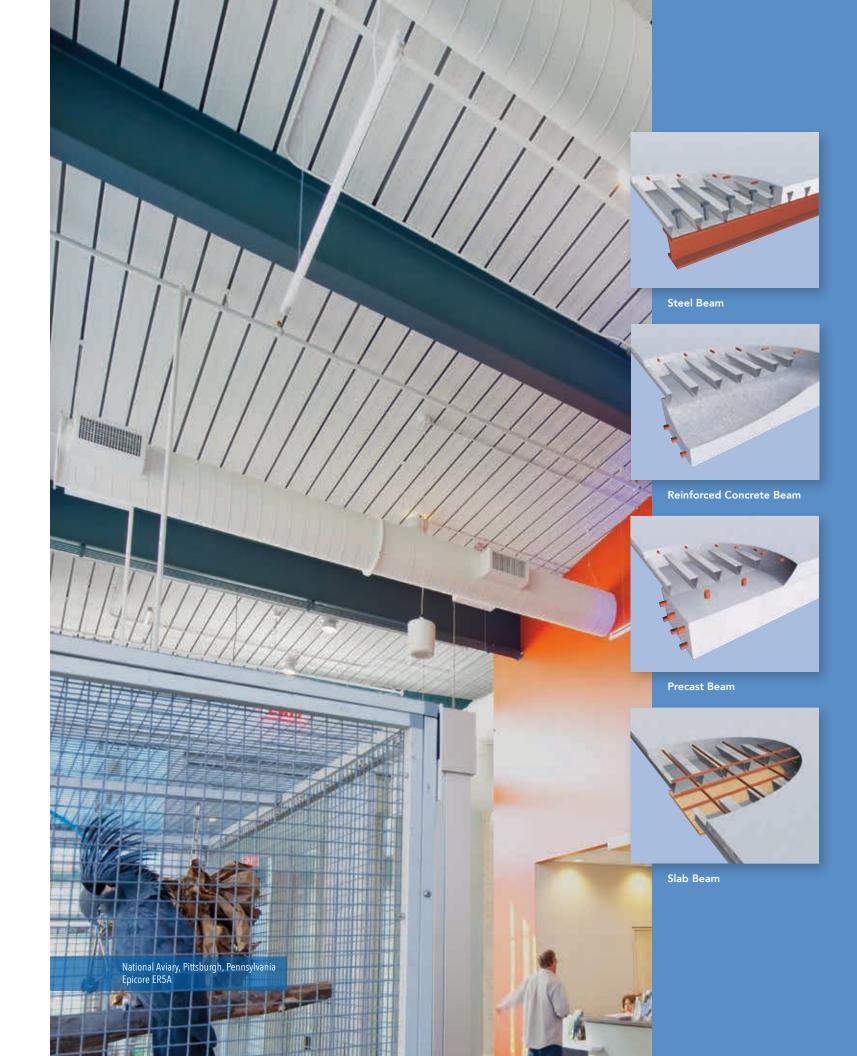
Hanging System

Epicore 3.5(A) and Epicore (A) dovetail ribs provide a simple, economical, and permanent means for hanging piping, ducts, and other mechanical and utility components. Epicore hangers are inserted parallel to the ribs and can be placed continuously, spaced across the width of the profile. Hangers can be installed as they are needed, and can be relocated, removed or reused at any time during the life of the building.

U.L. Approved Pipe Hangers for Fire Protection Systems

Epicore hangers have been rated under U.L. #203—Pipe Hanger Equipment for Fire Protection Service. Wedge Bolts and Ankores can be used in accordance with the National Fire Protection Association Standards For Installation of Sprinkler Systems (NFPA 13).

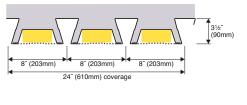
Superior Fire Ratings

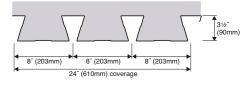

14 EPIC METALS

The Epicore 3.5(A) and Epicore (A) Acoustical Composite Floor Deck Ceiling Systems have efficient unprotected fire ratings (see page 16 and 17).

Epicore Composite Floor Deck fire ratings are superior to fire ratings of generic composite floor decks. In most instances, the fire ratings of Epicore Composite Floor Deck slabs require from $\frac{1}{2}$ - 1 $\frac{1}{4}$ less slab depth than generic profile slabs.

Epicore 3.5(A) Composite Floor Deck fire ratings under U.L. Design Number D942; Epicore Composite Floor Deck fire ratings under U.L. Design Number D904, D917 and D928; Epicore A Composite Floor Deck fire ratings under U.L. Design Number D916, D957 and D975.


For the unprotected fire ratings shown on page 16 and 17, no spray-applied fireproofing is required on the deck.


Epicore[®] 3.5 Composite Technical Tables

ACOUSTIC (EPICORE 3.5A) NON-ACOUSTIC (EPICORE 3.5)

Epicore 3.5A

Epicore 3.5

3.5 Approvals

ICC-ES Approval: ESR-2047

Epicore 3.5(A) Composite Floor System Safe Load Capacities (lbs.)*

_	Product	Hanger	Max Working Load
	Epicore 3.5A	³ /8″ & ¹ /2″ Ankore	675
	Epicore 3.5	3/8″ & 1/2″ Ankore	875

*Providing the floor system is designed to support these loads

Maximum Sprinkler Pipe Diameter (in.)

Hanger	Diameter (in.)
³ /8″ Ankore	4
³ /8″ Ankore	4
¹ /2″ Ankore*	5
¹ /2″ Ankore*	6
	³ /8" Ankore ³ /8" Ankore ¹ /2" Ankore*

* ¾" to ½" coupling nut required.

Epicore 3.5A Noise Reduction Coefficients*

Absorption Coefficients			NDC			
125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	NRC
0.21	0.86	0.73	0.93	0.75	0.71	0.80

*In accordance with ASTM C423 and E795. Consult EPIC Metals for other test results and individual reports. The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest .05.

Epicore 3.5A Fire Ratings (U.L. Design Number D942)

Restrained Fire Rating	Total Slab Depth (in.)	Type and Density of Concrete (pcf)
1 hour	6.25	RW (147)
1 hour	5.5	LW (110)
1½ hours	6.75	RW (147)
1½ hours	5.75	LW (110)
2 hours	7.25	RW (147)
2 hours	6	LW (110)
3 hours	8	RW (147)
3 hours	7	LW (110)
Note: Epicore 3.5A can achieve	the loads RW = Regular	Weight Concrete.

LW = Lightweight Concrete.

Note: Epicore 3.5A can achieve the loads shown on page 18 with the fire ratings indicated above.

Epicore 3.5 Fire Ratings

(U.L. Design Number D942)

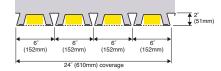
Restrained Fire Rating	Total Slab Depth (in.)	Type and Density of Concrete (pcf)
1½ hours	5.5	RW (147)
1½ hours	5.5	LW (110)
2 hours	5.75	RW (147)
2 hours	5.5	LW (110)
3 hours	7.25	RW (147)
3 hours	5.75	LW (110)

Note: Epicore 3.5 can achieve the loads RW = Regular Weight Concrete. shown on page 19 with the fire LW = Lightweight Concrete. ratings indicated above.

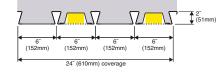
Suggested Temperature and Shrinkage Reinforcement

Slab Depth (in.)	Welded Wire Fabric Mesh
51/2 - 61/2	6 x 6 - W1.4 x W1.4
7 - 8	6 x 6 - W2.1 x W2.1

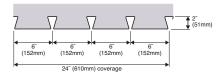
See U.L. Fire Resistance Directory for temperature and shrinkage reinforcement of fire rated assemblies. U.L. Fire Rated Slabs require 6 x 6 - W1.4 x W1.4 mesh.


Epicore 3.5(A) Section Properties

	Deck Type	Gage	Weight (psf)	A _s (in.²)	I _D (in. ⁴)	S _P (in. ³)	S _N (in.³)
		20	4.6	1.36	2.04	0.75	0.83
	Epicore	18	5.6	1.66	2.66	1.08	1.09
	3.5A	16	6.7	1.97	3.30	1.42	1.38
		20	3.2	0.95	1.83	0.69	0.81
	Epicore	18	4.3	1.26	2.49	1.01	1.10
	3.5	16	5.4	1.59	3.18	1.36	1.41


Epicore[®] **Composite** Technical Tables

ACOUSTIC (EPICORE A, A 50%) NON-ACOUSTIC (EPICORE)


Epicore A

Epicore A 50%

Epicore

Epicore Approvals

ICC-ES Approval: ESR-2047

Epicore (A) Composite Floor System Safe Load Capacities (lbs.)*

Product	Hanger	Max Work
Epicore A	³∕⁄≋″ Wedge Bolt	32
Epicore	3⁄8″ Wedge Bolt	82

*Providing the floor system is designed to support these loads

Maximum Sprinkler Pipe Diameter (in.)

Product	Hanger	Diamete
Epicore A*	³⁄ı‱″ Wedge Bolt	6
Epicore*	³⁄ı‱ Wedge Bolt	8

* 3/8" to 1/2" coupling nut required when suspending sprinkler pipe larger than 4" diameter

Epicore A Noise Reduction Coefficients*

Turne	Absorption Coefficients					
Туре	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 H
100% A	0.10	0.21	0.79	0.98	0.95	0.86
50% A	0.18	0.50	0.66	0.82	0.55	0.43

*In accordance with ASTM C423 and E795. Consult EPIC Metals for other test results and individual reports. The NRC is the average of the absorption coefficients at 250, 500, 1000, and 2000 Hz., rounded off to the nearest .05.

RW (147)

LW (110)

RW (147)

LW (110)

RW (147)

LW (110)

((U.L. Design Numbers D916, D957 and D975)				
	Restrained Fire Rating	Total Slab Depth (in.)	Type and Density o Concrete (pcf)		
	1 hour	5.5	RW (147)		
	1 hour	4.5	LW (110)		

6

5

6.5

5.25

7.25

6.1875

Epicore A Fire Ratings

Note: Epicore A can achieve the loads shown RW = Regular Weight Concrete. on page 20 with the fire ratings LW = Lightweight Concrete. indicated above

Epicore Fire Ratings

1½ hours

1½ hours

2 hours

2 hours

3 hours

3 hours

(U.L. Design Numbers D904, D917 and D928)

(O.E. Design Numbers D704, D717 and D720)				
Restrained Fire Rating	Total Slab Depth (in.)	Type and Density of Concrete (pcf)		
1 hour	4	RW (147)		
1½ hours	4.75	RW (147)		
2 hours	5.25	RW (147)		
2 hours	5	SLW (130)		
2 hours	4.5	LW (110)		
3 hours	6.75	RW (147)		
3 hours	6	SLW (130)		
3 hours	5.25	LW (110)		

king Load

25

325

ter (in.)

Note:	Epicore can achieve the loads shown
	on page 21 with the fire ratings
	indicated above.

RW = Regular Weight Concrete LW = Lightweight Concrete SLW = Semi-Lightweight Concrete

Suggested Temperature and Shrinkage Reinforcement

Slab Depth (in.)	Welded Wire Fabric Mesh
4	6 x 6 - W1.4 x W1.4
4 ¹ / ₂ - 5	6 x 6 - W2.1 x W2.1
51/2 - 8	6 x 6 - W2.9 x W2.9

See U.L. Fire Resistance Directory for temperature and shrinkage reinforcement of fire rated assemblies, U.I. Fire Rated Slabs require minimum 6 x 6 - W1.4 x W1.4 mesh for Epicore A and 6 x 6 - W2.9 x W2.9 mesh for Epicore

Epicore (A) Section Properties

Deck Type	Gage	Weight (psf)	A _s (in.²)	l _D (in.4)	S _P (in. ³)	S _N (in.³)
	20	4.2	1.22	0.63	0.46	0.33
Epicore A	18	5.0	1.47	0.77	0.59	0.44
	16	5.9	1.73	0.93	0.71	0.56
	20	2.7	0.79	0.47	0.34	0.31
Epicore	18	3.6	1.04	0.63	0.47	0.43
	16	4.5	1.33	0.79	0.59	0.57

Epicore[®] 3.5 Composite Technical Tables

Epicore 3.5A Composite Slab & Shoring Tables

				num Clea						Unifor	m Servio	e Load S	Slab Cap	acity (LF	RFD), psf	1						
	Slab Depth and Weight	Design Thickness (in.)	Withou Single	t Shoring	(ftin.) Triple				Simpl	e Span (Conditio	n (See N	ote 2)				(Neg	Continuous Span Condition (Negative Moment Reinforcement REQUIRED. See note 3) (ft.)				
	5		Span	Span	Span	10′0″	11′0″	12′0″	13′0″	14′0″	15′0″	16′0″	17′0″	18′0″	19′0″	20′0″	21′0″	22′0″	23′0″	24´0″	25´0″	
		0.0358	13-5	14-4	14-10	351	316	287	255	195	149	115	88	66	49	-	87	70	55	43	-	
	5.5″	0.0474	15-3	16-4	G	377	340	308	275	210	162	125	96	73		40	96	77	61		-	
	50 PSF	0.0600	16-0	18-3	G	352	316	287	262	226	175	135		80		45	104	84	67		41	
		0.0358	12-9	13-8	14-2	400	350	288	239	201	170	144	117	90	69	51	107	94	76	61	47	
	6″	0.0474	14-10	15-7	G	400	392	356	326	272		164	128	99		57	128	104	84		53	
	56 PSF	0.0600	15-6	17-5	G	400	369	335	306	281	227	177	138	108	83	63	138	113	92	74	59	
		0.0358	12-2	13-1	13-7	400	397	326	271	228	193		140	119	92	71	122	107	94	82	66	
	6.5″	0.0474	14-5	15-0	15-6	400	400	391	326	275		200	166	130		78	150	133			73	
	62 PSF	0.0600	15-1	16-9	G	400	400	383	350	322	289	227	179	141		86	150	141	121		81	
	7″	0.0358	11-8	12-7	13-1	400	400	366	304	256	216	184	157	135		94	137	120	106	93	82	
		0.0474	14-1	14-5	14-11	400	400	400	366	309				167		104	161	150			98	
	68 PSF	0.0600	14-9	16-1	G	400	400	400	394	362				181		113	161	152			107	
• †		0.0358	11-2	12-2	12-7	400	400	400	339	284			175	151		112	153	134	118		92	
	7.5″	0.0474	13-8	13-11	14-4	400	400	400	400					186		133	173	162			117	
74	74 PSF	0.0600	14-6	15-7	G	400	400	400	400	400				225		145	173				136	
		0.0358	10-10	11-9	12-2	400	400	400	373	314		227	194	167		124	169	149	131		102	
	8″	0.0474	13-3	13-5	13-11	400	400	400	400		323		238	206	179	156	184	173			130	
	80 PSF	0.0600	14-2	15-1	15-7	400	400	400	400	400				249		182	184	173			145	
_		0.0358	14-11	15-8	G	360	324	253	191	146	111	85	65	49	_		65	52	41	_		
	5.5″	0.0474	16-3	17-10	G	385	348	275	208	159	122	94		55		_	72	58			_	
	39 PSF	0.0600	17-0	20-0	G	360	324	295	225	173	133	103	79			_	79	64			_	
		0.0358	14-2	15-1	15-7	400	338	279	233	189	146	113	87			_	87	70	56		_	
	6″	0.0330	15-9	17-2	G	400	400	351	267	206	159	124		74		43	96	78			_	
	44 PSF	0.0600	16-6	19-2	G	400	379	344	288	222	172	134		81		47	105				44	
		0.0358	13-7	14-6	15-0	400	383	316	264	223	187	146		89		52	114	93	76		49	
	6.5″	0.0474	15-4	16-6	G	400	400	376	315	261	203		125	98	76	59	125				55	
	48 PSF	0.0600	16-1	18-6	G	400	400	394	361	281	219	172	136	107		65	135	112			61	
		0.0358	13-1	14-0	14-6	400	400	355	297	251	214	183		115	90	70	139	120	99		66	
	7″	0.0474	15-0	16-0	G	400	400	400	354	300	255			126		78	159	132			73	
	53 PSF	0.0474	15-9	17-10	G	400	400	400	400	350	275	201		137		85	172	143			81	
		0.0358	12-7	13-7	14-0	400	400	396	331	280	238	204	172	145	115	91	155	137	122	104	86	
	7.5″	0.0330	14-8	15-5	G	400	400	400	395	334		204		145	126	100	186		138	115	95	
	57 PSF	0.0600	15-5	17-3	G	400	400	400	400	393	337		215	172	138	110	186	175	150	125	104	
		0.0358	12-2	13-2	13-7	400	400	400	366	309	264	227	213	169		115	163	152	136		104	
	8″ - 62 PSF -	0.0474	14-5	15-0	15-6	400	400	400	400	370	316		236	196		127	198	186			120	
		0.0600	15-2	16-9	G	400	400	400	400	400	373	322	264	213		138	198	186			131	
		0.0000	152	107	U	100	100	400	100	100	0,0	- 522	204	215		150	- 170	100		130	131	

No Shoring Shoring Required in Shaded Areas

COMPOSITE SLAB DESIGN NOTES:

1. Design is based on ANSI/SDI C-2011 Standard for Composite Steel Floor Decks.

- 2. Simple span conditions for composite design assume no continuity of negative moments.
- Slab cracking at supports must be considered by the EOR for serviceability design. 3. Continuous span conditions are based on continuity over interior supports which requires appropriate negative moment reinforcing steel over supports.
- 4. Deflection limit of the composite slab is L/360 under total load.

5. Loads appearing in shaded areas require shoring. Do not exceed unshored spans shown above.

- 6. Composite slab spans are center-to-center of supports.
- 7. All loads are assumed to be statically applied. For dynamic Loads Consult EPIC Metals.
- 8. Slab weight has already been subtracted from the Uniform Service Load Capacity (LRFD) shown above.

DECK DESIGN AS A WET CONCRETE FORM:

- A. Maximum clear spans without shoring are based on the Steel Deck Institute recommendations for sequential loading and using LRFD methods. The table is based on 0.6Fy steel yield stress and deflection limits of L/180 or 0.75", whichever is less.
- B. Construction loads are 20 psf uniform loading or 150 lb concentrated load at midspan per SDI recommendations. If heavier construction loads or less form deflection is required, reduce spans or use temporary shoring.
- C. Runways and planking are recommended during wet concrete placement.
- D. Minimum bearing length is 1.5" at end supports and 4" at interior supports.
- E. Listed slab weights include weight of 16 gage deck.
- F. The slump of the concrete will influence the amount of water/cement leakage. Cleanup of the exposed ceiling surface will be required if leakage occurs.
- G. 48 foot max sheet length (recommended).
- H. For temporary shoring of architecturally exposed ceilings: It is recommended to use extra wide shoring support bearing surfaces and/or to reduce the maximum clear span shoring distances shown in the above table so that permanent indentations to the deck/ceiling (under the shoring supports) do not occur.

Epicore 3.5 Composite Slab & Shoring Tables

				num Clea			Uniform Service Load Slab Capacity (LRFD), psf														
	Slab Depth and Weight	Design Thickness (in.)	Withou Single	t Shoring	(ftin.) Triple				Simpl	le Span	Conditio	n (See N	lote 2)				(Neg	ative Mo	oment R	Conditio einforce ote 3) (fi	ment
	-		Span	Span	Span	10′0″	11′0″	12′0″	13′0″	14′0″	15′0″	16′0″	17′0″	18′0″	19′0″	20′0″	21′0″	22´0″	23′0″	24′0″	25′0″
	"	0.0358	11-6	12-11	13-4	347	312	282	230	172	129	95	70	49	-	-	69	53	-	-	-
ksi Regular Weight Concrete (147 pcf)	5.5″	0.0474	14-1	14-11	15-5	369	332	300	261	197	148				42		83	64	48	-	
	63 PSF	0.0600	14-11	16-10	G	340	305	276	251	221	168	127	95	71	51	-	95	75	58	43	-
(0.0358	11-0	12-5	12-10	367	295				135			72	52		80	69	58	44	-
7 pc	6″	0.0474	13-8	14-5	14-10	400	385	348	318	259	198	151	115	86	63	44	115	91	71	54	40
147	69 PSF	0.0600	14-7	16-2	G	399	358	324	295	270	222	171	131	99	74	54	131	105	83	65	49
ete (0.0358	10-8	12-0	12-4	400					154	129	108	90	75	54	92	79	67	57	49
ncre	6.5″	0.0474	13-2	13-11	14-4	400	400	362	300	251	212	179	153	118	89		132	115	99	78	61
ĉ	75 PSF	0.0600	14-4	15-8	G	400	400	372	339	311	286	223	173	134	103	77	151	141	114	91	72
ighi	7/	0.0358	10-3	11-7	12-0	400					173	145	122	102	86	72	104	89	77	66	56
We	7″	0.0474	12-8	13-5	13-11	400	400	400	337	282	238	202	172	147	120	91	149	130	114	100	85
ılar	81 PSF	0.0600	14-0	15-2	15-8	400	400	400	383	351	324	283	223	175	137	106	162	152	143	122	99
legi		0.0358	9-11	11-3	11-7						193	162	136	115	96	81	116	100	86	74	63
3 ksi F	7.5″	0.0474	12-3	13-0	13-6	400	400	400	374	314	265	225	192	164	141	121	167	146	128	113	99
	87 PSF	0.0600	13-9	14-8	15-2	400	400	400	400	392	340	291	250	216	176	139	174	163	153	144	131
		0.0358	9-8	10-11	11-3					255	214	179	151	127	107	90	129	112	97	83	71
	8″ 93 PSF	0.0474	11-11	12-8	13-1	400	400		400								185			125	
		0.0600	13-6	14-3	14-9	400	400	400	400	400							185			153	
		0.0358	12-11	14-3	14-9	358	321	237	249	229	99	73	53	-	-	-	53	40	-	-	-
	5.5″	0.0338	15-1	14-3	G	338	342	270	247	153	115	87					64			-	
	48 PSF	0.0474	15-11	18-7	G	351	316	270	202	173	132	100	75				75			_	
		0.0358	12-5	13-10	14-3	360	291	238	197	165	132	100		55			75		40	-	
(f)	6″	0.0338	12-3	16-0	G	400	397	348	262	200	152						89			42	
0 D	53 PSF	0.0474	14-7	18-0	G	400	370	336	202	200	173	133		78		42	102	82		51	
(11		0.0358	11-11	13-4	13-10	400	328	269	273	187	173	133					98		64	49	
rete	6.5″	0.0338	14-5	15-4	G	400	400	354	223	249	197						118		76	47 60	
ksi Light Weight Concrete (110 pcf)	57 PSF	0.0474	14-5	17-5	G	400	400	385	352	247	221	172	134	104			134			71	
ht C		0.0358	11-7	12-11	13-5	400	368	302	251	210	177	150	128	104			111		85	68	54
eigl	7″	0.0338	14-2	12-11	15-6	400	400	397	331	279	237					70	152	124		82	
it W	62 PSF	0.0474	15-0	16-11	G	400	400	400	397	357	278	219					172			95	
Ligh		0.0358	11-2	12-7	13-0	400	400	336	279	234	197	168	143	122			1/2		95	84	
ksi	7.5″	0.0474	13-10	12-7	15-0	400	400	400	369	311		227					171		130	107	
3 K	67 PSF	0.0600	14-9	16-5	G	400	400	400	400	391	334		216		136		189	178	148	122	
		0.0358	10-11	12-3	12-8	400	400	370	308	258	218			136		107	138	121	140	93	
	8″	0.0330	13-5	14-2	14-8	400	400	400	400	344	293		216				190			133	
	71 PSF	0.0474	13-5	16-0	G	400	400	400	400	400	369			244	170		202	190		155	
			14-0 Shoring Re	1		400	400	400	400	400	- 307	- 510	200	244	170		202	170	100	134	120

No Shoring Shoring Required in Shaded Areas

COMPOSITE SLAB DESIGN NOTES:

1. Design is based on ANSI/SDI C-2011 Standard for Composite Steel Floor Decks.

2. Simple span conditions for composite design assume no continuity of negative moments. Slab cracking at supports must be considered by the EOR for serviceability design.

3. Continuous span conditions are based on continuity over interior supports which requires appropriate negative

moment reinforcing steel over supports. 4. Deflection limit of the composite slab is L/360 under total load.

- 5. Loads appearing in shaded areas require shoring. Do not exceed unshored spans shown above.
- 6. Composite slab spans are center-to-center of supports.

7. All loads are assumed to be statically applied. For dynamic Loads Consult EPIC Metals.

8. Slab weight has already been subtracted from the Uniform Service Load Capacity (LRFD) shown above.

pcf) ete (147 i

Regular Weight Cond

:Si

DECK DESIGN AS A WET CONCRETE FORM:

A. Maximum clear spans without shoring are based on the Steel Deck Institute recommendations for sequential loading and using LRFD methods. The table is based on 0.6Fy steel yield stress and deflection limits of L/180 or 0.75", whichever is less.

B. Construction loads are 20 psf uniform loading or 150 lb concentrated load at midspan per SDI recommendations. If heavier construction loads or less form deflection is required, reduce spans or use temporary shoring.

C. Runways and planking are recommended during wet concrete placement.

D. Minimum bearing length is 1.5" at end supports and 4" at interior supports.

E. Listed slab weights include weight of 16 gage deck.

F. The slump of the concrete will influence the amount of water/cement leakage. Cleanup of the exposed ceiling surface will be required if leakage occurs.

G. 48 foot max sheet length (recommended).

H. For temporary shoring of architecturally exposed ceilings: It is recommended to use extra wide shoring support bearing surfaces and/or to reduce the maximum clear span shoring distances shown in the above table so that permanent indentations to the deck/ceiling (under the shoring supports) do not occur.

Epicore[®] **Composite** Technical Tables

Epicore A Composite Slab & Shoring Tables

f 0.038 10-11 10-11 10-11 400 400 331 273 230 177 128 92 66 47 94 72 54 41 40P56 0.044 11-10 11-10 11-10 000 400 381 277 128 92 66 47 94 78 64 65 64 40P56 0.0044 11-30 11-10 000 400 382 287 266 149 109 79 57 86 66 50 0.0038 10-4 10-4 000 400 375 233 215 160 117 109 80 116 107 70 70 70 71					num Clea						U	Iniform S	ervice Lo	oad Slab	Capacity	(LRFD), p	sf				
Verget Single Double Fipe Gor 70° 8°0° 9°1 10°° 11°° 12°° 13°° 14°° 15°° 16°° 70° 8°0 9° 10° 11°° 12° 13°° 14°° 15°° 16°° 70° 8°0 9° 10° 11°° 12° 13°° 14°° 15° 16°° 70° 8° 9° 24 12° 13°° 14°° 16°° 70° 8° 9° 24 12° 11°° 11° 11°° 10° 000 000 303 273 206 14° 10° 73 78 80 60 60 60 10° 11° 10°		Depth and	Thickness						9	Simple S	pan Conc	lition (Se	e Note 2	:)			(Ne	gative M	oment Re	einforcer	nent
f 0.0338 10:11 10:11 10:11 400 400 331 273 230 177 128 92 66 4.7 94 72 54 41 40 PSF 0.0447 11:10 11:11		Weight	()		1		6'0"	7′0″	8′0″	oʻ0″	10′0″	11′0″	12′0″	13'0"	1//0″	15′0″					20′0″
4 ⁴ 0.0474 11:10 11:10 11:10 11:10 400 400 378 267 191 138 100 73 52 95 78 60 45 0.0338 104 104 104 400 400 380 287 205 189 135 100 73 52 95 86 66 65 50 0.0338 104 104 104 400 400 337 231 226 189 136 100 73 116 107 84 65 50 0.0338 99 99 99 90 400 400 400 378 238 225 101 113 107 100 100 100 1010			0.0358	10.11	10.11	10.11						-									200
for the form 0.0600 124 127 13.0 400 400 380 287 206 149 109 79 57 95 86 66 50 45 0.0338 104 104 104 104 400 380 315 226 228 185 166 100 73 116 107 81 86 66 50 500000 1111 112 112 400 400 400 400 375 233 225 100 113 107		4″																			_
Grag 4.5 44 PS 0.0358 10.4 10.4 10.4 400 382 315 266 278 185 136 100 73 116 107 64 65 44 PS 0.0369 11-11 122 400 400 400 400 374 273 215 160 119 88 116 107 64 65 52 PSF 0.0374 11-0 110 110 400 400 400 370 278 275 113 113 126 117 75 0.0338 99 99 99 99 99 400 400 400 370 298 225 110 117 178 165 153 117 176 177 178 165		40 PSF									-										_
4.5' 0.0474 11.5 <	~										-										49
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	pcf	4.5″																			55
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	147	46 PSF									-										60
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	te (1																-				74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	icre	5″		11-0	11-0	11-0															82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Con	52 PSF				-															90
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ght																-				89
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Wei			10-10	10-10	10-10	400	400		400											98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 ksi Regular	55 PSF					400			400		392					147				108
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				9-4	9-4			400			336	289					157				106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.5″		10-7	10-7	10-7	400	400	400	400	400			278		161	157				116
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		58 PSF	0.0600	11-2	11-2	11-4	400	400	400	400	400	400				175	157				117
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.0358	8-11	8-11	8-11	400	400	400	400	371	319	278	246	219	190	178			142	133
Che de PS 0.0600 10.10 10.10 10.10 400 400 400 400 400 301 233 178 165 153 142 1 4 31 PSF 0.0600 10.10 10.10 400 400 400 400 400 400 400 400 361 301 233 178 165 153 142 1																					133
View 0.0358 12.0 12.0 400 400 331 267 187 133 96 69 49 - 70 53 40 - 9 31 PSF 0.0474 12.7 12.7 12.8 400 400 400 288 202 144 104 75 54 - 83 64 49 - 76 59 45 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 84 84 83 84 84 83 84 84 84 84 84 84 84 84 </td <td></td> <td>64 PSF</td> <td></td> <td>133</td>		64 PSF																			133
4" 0.0474 12-7 12-7 12-8 400 400 288 202 144 104 75 54 - 76 59 45 - 31 P5F 0.0600 13.1 13.8 14-2 400 400 311 218 156 113 82 60 43 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 83 64 49 - 84 104 113 88 69 53 - 104 81 60 112 96 113 114 114 108 100 102 75 59 64 112 96 112 96 112 96 112 96 112 112 </td <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>				1	1						1										
31 PSF 0.0600 13.1 13.8 14.2 400 400 311 218 156 113 82 60 43 4.5' 36 PSF 0.0358 11.5 11.5 11.5 400 400 382 315 265 191 139 102 75 55 0.0474 12.2 12.2 12.2 400 400 400 286 206 151 111 82 60 113 88 69 53 65 0.0474 12.2 12.2 12.2 400 400 400 308 222 163 121 89 66 122 96 75 59 6 5'' 0.0358 10-10 10-10 400 400 400 391 284 209 156 117 88 146 125 100 79 6 5'' 0.0474 11-8 11-8 400 400 400 378		4″																			-
VPOT 0.0358 11-5 11-5 11-5 400 400 382 315 265 191 139 102 75 55 104 81 63 48 36 PSF 0.0474 12-2 12-2 12-2 400 400 400 286 206 151 111 82 600 5' 0.0600 12-8 13-1 13-6 400 400 400 308 222 163 121 89 66 112 96 75 59 40 5' 0.0474 11-10 11-10 400 400 400 306 226 169 127 95 146 135 108 86 40 60 12-3 12-6 12-11 400 400 400 306 226 169 127 95 156 136 108 86 40 5.25'' 0.0474 11-8 11-8 400 <		31 PSF																			-
4.5" 0.0474 12.2 12.2 400 400 400 286 206 151 111 82 60 136 PSF 0.0600 12.8 13.1 13.6 400 400 400 308 222 163 121 89 66 113 88 69 53 4 5" 0.0600 12.8 13.1 13.6 400 400 308 222 163 121 89 66 112 96 75 59 4 44 108 80 146 155 17 91 72 95 40 PSF 0.0474 11.10 11.10 400 400 400 306 226 169 127 95 146 135 108 86 96 5.25" 0.0474 11.8 11.8 400 400 400 303 229 144 183 138 104 156 145 118<																					-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ð	4.5″																			- 41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	d 0	36 PSF																			41
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(11																				4J 56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rete	5″																			62
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	onc	40 PSF									-										68
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ht C																				67
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	leig	5.25″																			74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	It W	43 PSF																			82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ligh																				80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5.5″								-											88
$ \frac{0.0358}{6} \frac{10.0}{11.2} \frac{10.0}{11.2} \frac{10.0}{11.2} \frac{400}{11.2} \frac{400}{400} \frac{400}{400} \frac{400}{400} \frac{371}{400} \frac{319}{400} \frac{278}{400} \frac{246}{278} \frac{196}{213} \frac{189}{164} \frac{176}{164} \frac{136}{148} \frac{116}{148} 116$		45 PSF				-											-				97
6 0.0474 11-2 11-2 11-2 400 400 400 400 400 400 400 266 278 213 164 189 176 164 148 1																					110
		6″									-										120
50 PSF 0.0600 11-8 11-8 12-0 400 400 400 400 400 400 395 300 230 178 189 176 164 153 1		50 PSF															-				131

No Shoring Shoring Required in Shaded Areas

COMPOSITE SLAB DESIGN NOTES:

1. Design is based on ANSI/SDI C-2011 Standard for Composite Steel Floor Decks.

2. Simple span conditions for composite design assume no continuity of negative moments. Slab cracking at supports must be considered by the EOR for serviceability design.

3. Continuous span conditions are based on continuity over interior supports which requires appropriate negative moment reinforcing steel over supports.

4. Deflection limit of the composite slab is L/360 under total load.

5. Loads appearing in shaded areas require shoring. Do not exceed unshored spans shown above.

6. Composite slab spans are center-to-center of supports.

7. All loads are assumed to be statically applied. For dynamic Loads Consult EPIC Metals.

8. Slab weight has already been subtracted from the Uniform Service Load Capacity (LRFD) shown above.

DECK DESIGN AS A WET CONCRETE FORM:

A. Maximum clear spans without shoring are based on the Steel Deck Institute recommendations for sequential loading and using LRFD methods. The table is based on 0.6Fy steel yield stress and deflection limits of L/180 or 0.75", whichever is less.

B. Construction loads are 20 psf uniform loading or 150 lb concentrated load at midspan per SDI recommendations. If heavier construction loads or less form deflection is required, reduce spans or use temporary shoring.

C. Runways and planking are recommended during wet concrete placement.

D. Minimum bearing length is 1.5" at end supports and 4" at interior supports.

E. Listed slab weights include weight of 16 gage deck.

F. The slump of the concrete will influence the amount of water/cement leakage. Cleanup of the exposed ceiling surface will be required if leakage occurs.

G. For temporary shoring of architecturally exposed ceilings: It is recommended to use extra wide shoring support bearing surfaces and/or to reduce the maximum clear span shoring distances shown in the above table so that permanent indentations to the deck/ceiling (under the shoring supports) do not occur.

Epicore Composite Slab & Shoring Tables

				num Clea		Uniform Service Load Slab Capacity (LRFD), psf															
	Slab Depth and Weight	Design Thickness (in.)	Single	t Shoring Double	(ftin.) Triple	Simple Span Condition (See Note 2)										Continuous Span Condition (Negative Moment Reinforcement REQUIRED. See note 3) (ft.)					
			Span	Span	Span	6′0″	7´0″	810″	9′0″	10′0″	11′0″	12′0″	13′0″	14′0″	15′0″	16′0″	17′0″	18′0″	19′0″	20′0″	
		0.0358	8-3	8-9	9-0	400	400	340	280	226	164	115	81	55	-	82	60	43	-	-	
	4″	0.0474	10-1	10-3	10-7	400	400	400	381	269		133				96	72				
	49 PSF	0.0600	11-2	11-9	12-1	400	400	400	386	294	209					109	83				
G		0.0358	7-11	8-4	8-8	400	400	391	322	267	214	171	123	88	61	125	95	72	53	-	
/ bc	4.5″	0.0474	9-7	9-9	10-1	400	400	400	400	353		195		103		144	111	85			
147	55 PSF	0.0600	10-9	11-3	11-7	400	400	400	400	381	300	218	160	117	85	162	126	97	74	56	
ete (0.0358	7-7	8-0	8-3	400	400	400			249	202	165	129	94	146	124	106	83	62	
ncre	5″	0.0474	9-2	9-5	9-9	400	400	400	400	400	332	271	201	149	110	200	160	125	97	75	
S	61 PSF	0.0600	10-5	10-9	11-2	400	400	400	400	400	376	303	225	168	125	205	180	142	111	87	
ight	5.05%	0.0358	7-5	7-10	8-1	400	400	400			266	216	177	146	113	157	133	114	97	77	
ksi Regular Weight Concrete (147 pcf)	5.25″ 65 PSF	0.0474	9-0	9-3	9-6	400	400	400	400	400	355	291	235	176	131	214	184	149	117	91	
ular		0.0600	10-3	10-7	10-11	400	400	400	400	400	397	351	263	198	149	215	200	168	133	105	
legi		0.0358	7-4	7-8	8-0	400	400	400			284	231	189	157	130	167	143	122	104	89	
3 ksi F	5.5″	0.0474	8-10	9-0	9-4	400	400	400	400	400	379	311	257	205	154	226	197	170	138	109	
	68 PSF	0.0600	10-1	10-4	10-9	400	400	400	400	400	400	370	304	230	174	226	209	195	157	125	
		0.0358	7-1	7-5	7-8	400	400	400			320	261	214	177	147	189	162	138	119	102	
	6″ 74 PSF	0.0474	8-6	8-9	9-0	400	400	400	400			351				246	223				
		0.0600	9-8	10-0	10-4	400	400	400	400	400		400				246	228				
		0.0358	9-2	9-7	9-11	400	400	340	260	180	126	89	62	43	_	63	47	-	_	-	
	4″	0.0474	11-2	11-3	11-8	400	400	400	295	205	145					74	56				
	38 PSF	0.0600	12-0	12-11	13-4	400	400	400	328	229	162	116	83			85	64				
		0.0358	8-9	9-3	9-7	400	400	391	322	256	182	131	94	68		96	73	55			
pcf)	4.5″	0.0474	10-8	10-10	11-2	400	400	400	400	291		151				111	86				
10	43 PSF	0.0600	11-8	12-5	12-10	400	400	400	400	323	232					126	98				
e (1		0.0358	8-5	8-11	9-2	400	400	400	364	306	247	184		99		137	106				
cret	5″	0.0474	10-3	10-5	10-9	400	400	400	400	396		210				157	123				
čoŭ	47 PSF	0.0600	11-4	11-11	12-4	400	400	400	400	400	318					176	139				
ght (0.0358	8-3	8-9	9-0	400	400	400	385	324	265			117		159	126	98			
Veiç	5.25″	0.0474	10-1	10-3	10-7	400	400	400	400	400		244				184	145				
ht V	49 PSF	0.0600	11-2	11-9	12-1	400	400	400	400	400	368					206	163				
Lig		0.0358	8-2	8-7	8-10	400	400	400	400	342	283			137		171	147	116			
3 ksi Light Weight Concrete (110 pcf)	5.5″	0.0474	9-10	10-1	10-5	400	400	400	400	400		281				213	169				
	52 PSF	0.0600	11-0	11-6	11-11	400	400	400	400	400	400					237	190				
		0.0358	7-10	8-4	8-7	400	400	400	400	377	319			181		193	166			99	
	6″	0.0474	9-6	9-9	10-1	400	400	400	400	400		347				259	223				
	56 PSF	0.0600	10-9	11-2	11-6	400	400	400	400	400		400				259	241				

No Shoring Shoring Required in Shaded Areas

COMPOSITE SLAB DESIGN NOTES:

1. Design is based on ANSI/SDI C-2011 Standard for Composite Steel Floor Decks.

2. Simple span conditions for composite design assume no continuity of negative moments. Slab cracking at supports must be considered by the EOR for serviceability design.

3. Continuous span conditions are based on continuity over interior supports which requires appropriate negative

moment reinforcing steel over supports.

4. Deflection limit of the composite slab is L/360 under total load.

5. Loads appearing in shaded areas require shoring. Do not exceed unshored spans shown above. 6. Composite slab spans are center-to-center of supports.

7. All loads are assumed to be statically applied. For dynamic Loads Consult EPIC Metals.

8. Slab weight has already been subtracted from the Uniform Service Load Capacity (LRFD) shown above.

DECK DESIGN AS A WET CONCRETE FORM:

A. Maximum clear spans without shoring are based on the Steel Deck Institute recommendations for sequential loading and using LRFD methods. The table is based on 0.6Fy steel yield stress and deflection limits of L/180 or 0.75", whichever is less.

B. Construction loads are 20 psf uniform loading or 150 lb concentrated load at midspan per SDI recommendations. If heavier construction loads or less form deflection is required, reduce spans or use temporary shoring.

- C. Runways and planking are recommended during wet concrete placement.
- D. Minimum bearing length is 1.5" at end supports and 4" at interior supports.
- E. Listed slab weights include weight of 16 gage deck.
- F. The slump of the concrete will influence the amount of water/cement leakage. Cleanup of the exposed ceiling surface will be required if leakage occurs.
- G. For temporary shoring of architecturally exposed ceilings: It is recommended to use extra wide shoring support bearing surfaces and/or to reduce the maximum clear span shoring distances shown in the above table so that permanent indentations to the deck/ceiling (under the shoring supports) do not occur.

Epicore[®] 3.5(A) & (A) Composite Floor Deck Ceiling Systems Specifications

Notes: Omit underlined areas for non-acoustic applications.

PART 1: GENERAL

1.1 SUMMARY

The requirements of this specification section include all materials, equipment and labor necessary to furnish and install Acoustical Composite Floor Deck Systems.

- A. <u>Acoustical</u> Composite Floor Deck shall serve as permanent metal form and total positive reinforcement for concrete floor slabs as indicated on the contract drawings.
- B. <u>Acoustical</u> Composite Floor Deck shall provide an exposed bottom surface that is substantially flat. The narrow rib openings of the Acoustical Composite Floor Deck panels shall provide the appearance of a linear ceiling. Sidelap fasteners shall be concealed within the depth of the dovetail-shaped ribs.
- C. The 3.5" Acoustical Composite Floor Deck: Ankore hanging devices (supplied with ankore locks) that are specially configured to fit into the dovetail-shaped ribs of the 3.5" Acoustical Composite Floor Deck panels shall be available. These hanging devices shall be utilized wherever any related work is suspended from the 3.5" Acoustical Composite Floor Deck. Ankore hanging devices shall be furnished by the installer of the related work unless otherwise indicated.

The 2["] <u>Acoustical</u> Composite Floor Deck: Wedge Bolt hanging devices (supplied with Wedge Locks) that are specially configured to fit into the dovetail-shaped ribs of the 2" Acoustical Composite Floor Deck panels shall be available. These hanging devices shall be utilized whenever any related work is suspended from the 2" <u>Acoustical</u> Composite Floor Deck slab. Wedge Bolt hanging devices shall be furnished by the installer of the related work unless otherwise indicated.

1 2 RELATED WORK

The following related work is not part of this specification section:

- A. Cast-In-Place Concrete: Concrete fill, welded wire fabric, reinforcing steel, and temporary shoring.
- B. Structural Steel: Supplementary framing and shear studs.
- C. Fireproofing: Preparation for and application of fireproofing to supporting steel members
- D. Ceilings: Attachments to <u>Acoustical</u> Composite Floor Deck.
- E. Painting: Preparation for and application of field painting.
- F. Mechanical: Attachments to Acoustical Composite Floor Deck.
- G. Electrical: Attachments to <u>Acoustical</u> Composite Floor Deck.

1.3 SUBMITTALS

Submit the following items in accordance with the conditions of the contract and appropriate specification sections:

- A. Product data for <u>Acoustical</u> Composite Floor Deck and hanging devices including material types, dimensions, finishes, load capacities, and U.L. fire resistance ratings.
- B. Erection drawings for <u>Acoustical</u> Composite Floor Deck and related accessory items showing profiles and material thicknesses, layout, anchorage, openings as dimensioned on the structural drawings, and shoring requirements.

1.4 REFERENCE STANDARDS

- A. Section Properties: Shall be computed in accordance with the American Iron and Steel Institute (AISI) Specification for the Design of Cold-Formed Steel Structural Members.
- B. Welding: Shall comply with applicable provisions of American Welding Society (AWS) D1.3 Structural Welding Code-Sheet Steel
- C. Fire Resistance Classification: Shall be acceptable for use in U.L. Fire Resistance Design No. D942 for 3.5" Acoustical Composite Floor Deck; U.L. Laboratories Fire Resistance Design No. D942 for 3.5" Composite Floor Deck; U.L. Fire Resistance Design No. D916, D957, and D975 for 2" Acoustical Composite Floor Deck; U.L. Fire Resistance Design No. D904, D917, and D928 for 2" Composite Floor Deck. All Acoustical Composite Floor Deck Panels used in rated fire resistance designs shall bear the appropriate U.L. classification marking.
- D. Cast-In-Place Concrete: Shall be in accordance with applicable sections of chapters 3, 4, and 5 of American Concrete Institute (ACI) 318 Building Code Requirement for Reinforced Concrete. Minimum compressive

strength shall be 3000 psi. Admixtures containing chloride salts shall not be used. Additionally, all concrete constituents including but not limited to aggregates, sand, and water shall be closely monitored to assure that the chlorides do not exceed the limits proscribed in ACI 318.

Noise Reduction Coefficient: Shall be verified by the results of sound E. absorption tests conducted in accordance with ASTM C423 and E795. A minimum NRC of 0.80 shall be provided for the 3.5" Acoustical Composite Floor Deck. A minimum NRC of 0.75 (NRC of 0.65 for 50% Acoustic) shall be provided for the 2" Acoustical Composite Floor Deck. Copies of the sound absorption test shall be submitted upon request.

1.5 QUALITY ASSURANCE

- A. Manufacturer shall have been regularly engaged in the production of an acoustical roof deck section with dovetail-shaped ribs for a period of at least 10 years.
- Β. Acoustical Roof Deck shall be approved by the International Code Council Evaluation Service (ICC-ES) for use as a structural roof deck and shear diaphragm and have a valid ICC-ES evaluation report.

EPICORE Wedge Bolt and Ankore Approval ICC-ES Approval: Report #ESR-2255

International Code Council Evaluation Service Approval ICC-ES Approval: Report #ESR-2047

PART ²: PRODUCTS

².¹ MANUFACTURER

- A. In accordance with the requirements of this specification section, provide products manufactured by EPIC Metals, Rankin, PA.
- B. Substitutions: (Under Provisions of Division 01) Not permitted.

2.2 MATERIALS

- A. <u>Acoustical</u> Composite Floor Deck ceiling panels shall be cold-formed from steel sheets conforming to ASTM A653, Grade 40 and Grade 33 or equal, having a minimum yield strength of 40,000 psi and 33,000 psi.
- Before forming, the steel sheets shall have received a hot-dip protective Β. coating of zinc conforming to ASTM A924, Class G60 or G90.

Primer Paint Option-Prior to forming, galvanized steel shall be chemically cleaned and pre-treated followed by (on the ceiling surface) an oven-cured epoxy primer and a second coat of oven-cured polyester primer paint applied in the manufacturer's standard color of off-white. Compatibility of field applied finish paint with factory applied primer paint shall be the responsibility of the painting contractor.

Finish Paint Option—Prior to forming, galvanized steel shall be chemically cleaned and pre-treated followed by (on the ceiling surface) an oven-cured epoxy primer and a second coat of oven-cured polyester paint. After factory painting is complete, a removable film shall be applied to the bottom surface of the panels to protect paint finish during manufacturing, shipping, and handling. The protective film is to be removed by the erector prior to installation.

Paint Option—For specialized painting systems that are recommended for Natatoriums and other high humidity applications, contact EPIC Metals.

C. The minimum uncoated thickness of material supplied shall be within 5% of the design thickness.

2.3 FABRICATION

- A. The 3.5" deep Acoustical Composite Floor Deck panels shall have continuous dovetail-shaped ribs spaced 8" on center
- The 2" deep Acoustical Composite Floor Deck panels shall have continuous dovetail-shaped ribs spaced 6" on center.
- B. The design thickness and minimum section properties shall be indicated on the contract drawings.
- C. Acoustical Composite Floor Deck panels shall have full depth positive registering sidelaps that can be fastened together by welds or screws.
- D. Whenever possible, <u>Acoustical</u> Composite Floor Deck panels shall be fabricated to provide a minimum three span condition.
- Acoustical Composite Floor Deck panels shall be fabricated from sections F formed with dovetail-shaped ribs. The sections shall be perforated in the areas between the dovetail-shaped ribs as indicated on the contract drawings. All perforated areas shall be covered with "cap" sections formed from galvanized steel sheets and factory attached to the underlying perforated sections. The combination of these sections shall form units that contain cavities suitable for sound absorbing elements.

².4 ACCESSORIES

- A. The 3.5" deck Ankore hanging devices (which include Ankore locks) or the 2" deck Wedge Bolt hanging devices (which include Wedge Locks) shall be installable and relocatable anywhere along the length of the interior ribs of the Acoustical Composite Floor Deck panels.
- B. Column closures, end closures, and side closures shall be provided as required by the manufacturer's standards.
- C. Manufacturer's standard flexible or metal type rib profile closures shall be provided as indicated on the contract drawings.
- D. Slab edge forms of 10 gage or less material thickness shall be provided as indicated on the contract drawings.
- E. Reinforcement for small openings that are shown on the structural drawings and do not require supplementary framing shall be provided based on the manufacturer's recommendations.
- F. <u>Acoustic elements shall be factory installed above the perforations in</u> the bottom flat area between the dovetail-shaped ribs. To facilitate field painting of the perforated surfaces, the sound absorbing elements shall be supported above the surface on corrosion resistant spacers. Sound absorbing elements and spacers shall be factory installed.

PART 3: EXECUTION

3.1 GENERAL

Acoustical Composite Floor Deck panels and accessories shall be installed in strict accordance with the manufacturer's approved erection drawings, installation instructions, the Steel Deck Institute (SDI) Manual for Construction with Steel Deck, and all applicable safety regulations.

3.2 BEFORE INSTALLATION

- A. The need for temporary shoring shall be investigated. Shoring tables published by the manufacturer shall be consulted to determine if shoring will be required. Unshored spans shall be reduced if greater construction loads are anticipated or if less deflection of the deck as a form is allowable
- B. The supporting frame and other work relating to Acoustical Composite Floor Deck shall be examined to determine if this work has been properly completed. Temporary shoring, if required, shall be in place prior to installation of Acoustical Composite Floor Deck panels.
- C. All components of the Acoustical Composite Floor Deck System shall be protected from significant damage during shipment and handling. If storage at the jobsite is required, bundles or packages of these materials shall be elevated above the ground, sloped to provide drainage, and protected from the elements with a ventilated waterproof covering.

3.3 INSTALLATION

- A. Bundles or packages of Acoustical Composite Floor Deck System components shall be located on supporting members in such a manner that overloading of any of the individual members does not occur. Acoustical Composite Floor Deck panels shall not be placed on concrete supporting members until after the members have adequately cured or properly designed formwork is in place.
- B. Before being permanently fastened, Acoustical Composite Floor Deck panels shall be placed with ends accurately aligned and adequately bearing on supporting members or formwork. Proper coverage of the Acoustical Composite Floor Deck panels shall be maintained. Care must be taken by the erector to maintain uniform spacing of the bottom rib opening (equal to the openings in the profiled sheet) at the sidelaps.
- C. Field cutting of Acoustical Composite Floor Deck panels shall be performed in a neat and precise manner. Only those openings shown on the structural drawings shall be cut. Other openings shall be approved by the structural engineer and cut by those requiring the opening.
- D. Acoustical Composite Floor Deck panels shall be fastened to all supporting members with $\frac{3}{4}$ diameter puddle welds at a nominal spacing of 8 on center or less for 3.5" deck and 6" on center or less for 2" deck as indicated on the manufacturer's erection drawings.
- E. Sidelaps of Acoustical Composite Floor Deck panels shall be fastened together by welds or screws at a spacing of 36" on center or less as indicated on the manufacturer's erection drawings. Sides of Acoustical Composite Floor Deck panels that are located at perimeter edges of the building shall be fastened to supporting members at a spacing of 36" on center or less as indicated on the manufacturer's erection drawings.
- F. Column closures, end closures, side closures, rib closures, slab edge forms, and supplied reinforcement for small openings shall be fastened as indicated on the manufacturer's erection drawings.
- G. Shear studs may be substituted for puddle welds to permanently fasten Acoustical Composite Floor Deck panels to steel supporting members. The shear stud manufacturer shall provide instructions for welding studs through Acoustical Composite Floor Deck.
- H. Mechanical fasteners may be substituted for puddle welds to permanently fasten Acoustical Composite Floor Deck panels to supporting members. The mechanical fastener manufacturer shall provide documentation as to

the equivalent load capacity and proper installation procedure for each type of fastener being used.

3.4 WORK BY OTHER TRADES

A. The slump of the concrete will determine the amount of concrete leakage and cleanup that will be required to the ceiling surface. On all projects some cleanup of the ceiling surface will be required.

3.5 AFTER INSTALLATION

- A. Construction loads that could damage the <u>Acoustical</u> Composite Floor Deck such as heavy concentrated loads and impact loads shall be avoided. Planking shall be used in all high traffic areas.
- B. Prior to placement of concrete, the top surface of Acoustical Composite Floor Deck shall be cleaned of all debris, grease, oil, and other foreign substances. Cleaning the bottom surface of the Acoustical Composite Floor Deck for field painting shall be the responsibility of the painting contractor.
- C. Galvanized coatings that are significantly damaged shall be repaired. An appropriate galvanized repair paint shall be used, and the paint manufacturer's application instructions shall be followed.
- D. Temporary shoring, if required, shall remain in place until after the Acoustical Composite Floor slab has attained at least 75% of its desian strenath

3.6 PROTECTION

When the Epicore Composite Floor Slab is used in an exterior application (such as a balcony) the steel deck shall be adequately protected by field priming and painting with a rust inhibitive paint or by stuccoing the deck. The surface of the concrete shall also be adequately sealed. The composite deck provides the positive reinforcement for the slab; therefore, the finish on the steel deck must be specified by the architect and engineer for the environment it will be used in to protect the steel deck for the life of the structure.

Designer's Responsibility & Warranty

Designer's Responsibility

The information presented in this brochure has been prepared in accordance with generally recognized engineering principles. We recommend that this information not be used or relied upon for any application without a thorough review by a licensed professional engineer, designer, or architect who will be competent to evaluate the significance and limitations of this material and who will accept responsibility for the application of this material for any specific application.

EPIC Metals makes no representation or warranty respecting any information contained in this manual, including but not limited to the accuracy, completeness, or suitability of such information for any particular purpose or use.

EPIC Metals expressly disclaims any and all warranties, expressed or implied.

By making this information available, EPIC Metals is not rendering professional services, and assumes no duty or responsibility with respect to any person making use of such information.

In addition, EPIC Metals is not liable for any claim, demand, injury, loss, expense, or liability of any kind whatsoever that in any way arises out of, or is connected with, the use of the information contained in this publication, whether or not such claim, demand, loss, expense, or liability results directly or indirectly from any action or omission of EPIC Metals. Any party using the information contained in this brochure assumes all liability arising from such use.

Since hazards may be associated with the handling, installation, or use of steel and its accessories, prudent construction practices should always be followed. We recommend that the parties involved in such handling, installation, or use review all applicable manufacturer's material safety data sheets, applicable rules and regulations of the Occupational Safety and Health Administration and other government agencies having jurisdiction over such handling, installation, or use, and other relevant construction practice publications, including the Steel Deck Institute (SDI) Manual for Construction with Steel Deck.

Warranty

EPIC Metals warrants that materials to be furnished, insofar as they are manufactured by EPIC Metals, shall be free from structural defects. In the event of the failure of the material within one year from the date of delivery, and providing that such failure is attributed to defects found to have existed at the time of delivery, EPIC Metals' liability hereunder shall be limited to furnishing necessary replacement material. EPIC Metals assumes no liability for damages, losses, or injuries, direct or consequential, that may arise from use or inability to use the products.

Except as herein provided, there are no expressed or implied warranties as to merchantability or fitness of the materials for any particular purpose.

11 Talbot Avenue Rankin, PA 15104 USA 877-696-3742 Toll-Free 412-351-3913 Tel 412-351-2018 Fax

epicmetals.com

Copyright © 2009, 2015 EPIC Metals Corporation. All rights reserved. Reproduction in whole or in part without the express consent of EPIC Metals Corporation is prohibited.

EPIC Metals Specialty Building Product Catalogs:

Envista[®] Roof and Floor Deck Ceiling Systems

Toris[®] Roof and Floor Deck Ceiling Systems

EPIC Wideck[®] Long-Span Roof and Floor Deck Ceiling Systems

EPIC Archdeck[®] Curved Roof Deck Ceiling Systems

EPICORE MSR[®] Multi-Story Residential Composite Floor Deck

EPIC Roof and Acoustical Deck Systems

EPIC Composite Acoustical Floor and Form Decks JetBlue Park (Red Sox Spring Training Facility) Fort Myers, Florida Epicore ER3.5

Front Cover: Cal Poly State University Recreation Center, San Luis Obispo, California Epicore ER3.5A

Specifying EPIC Metals' Epicore[®] Roof and Floor Deck Ceiling Systems for your next project can bring the structural art of the building's design and acoustics to the appreciation of the public. Acoustic Epicore enables the architect or engineer to control the interior sound environment of the building. EPIC Metals continues to be the innovative leader in the design and production of roof and floor deck ceiling systems.

CERTIFIED ENVIRONMENTAL PRODUCT DECLARATION ULCOM/EPD

Declare.

Steel Deck with EPICLAD® Finish Red List Free